Abstract

Currently, the most prominent barrier to the success of orally delivered paclitaxel (PTX) is the extremely limited bioavailability of delivered therapeutic. In light of this issue, an amphiphilic sulfhydrylated N-deoxycholic acid-N,O-hydroxyethyl chitosan (TGA-DHC) was synthesized to improve the oral bioavailability of PTX. First, TGA-DHC demonstrated substantial loading of PTX into the inner hydrophobic core. A desirable enhancement in the bioavailability of PTX by TGA-DHC was verified by pharmacokinetic studies on rats against Taxol and non-sulfhydrylated DHC micelles. Moreover, cellular uptake studies revealed significant accumulation of TGA-DHC micelles encapsulating PTX or rhodamine-123 into Caco-2 cells via clathrin/caveolae-mediated endocytosis and inhibition of P-gp efflux of substrates. The results of the Caco-2 transport study further confirmed the mechanistic basis of TGA-DHC efficacy; which was attributed to permeabilized tight junctions, clathrin-mediated transcytosis across the endothelium, and inhibition of P-gp. Finally, in vitro mucoadhesion investigations on freshly excised rat intestine intuitively confirmed increased intestinal retention of drug-loaded TGA-DHC through thiol-mediated mucoadhesion. TGA-DHC has demonstrated the capability to overcome what is perhaps the most prominent barrier to oral PTX efficacy, low bioavailability, and serves as a prominent platform for oral delivery of P-gp substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.