Abstract

Nuclear receptor co-repressor (N-CoR) is a critical regulator of neural stem cell differentiation. Nuclear localization of N-CoR is a feature of undifferentiated neural stem cells and cytoplasmic translocation of N-CoR leads to astrocytic differentiation. Comparative proteomic analysis of microdissected glioblastoma multiforme (GBM) specimens and matched normal glial tissue reveals increased expression of N-CoR in GBM. In GBM primary cell cultures, tumor cells with nuclear localization of N-CoR demonstrate an undifferentiated phenotype, but are subject to astroglial differentiation upon exposure to agents promoting phosphorylation of N-CoR and its subsequent translocation to the cytoplasm. Treatment of glioma cell lines with a combination of retinoic acid and low-dose okadaic acid decreases the co-repressor effect of N-CoR and has a striking synergistic effect on growth inhibition. The identification of N-CoR in GBM provides insights into the tumorigenesis process and supports the development of differentiation-based therapeutic strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call