Abstract

Accumulation of degenerated elastic fibers in the sun-exposed skin designated as actinic elastosis is a histological hallmark of photodamaged skin. Previous studies have indicated that the elastic fibers of actinic elastosis interact with lysozyme and are modified by N(ɛ)-(carboxymethyl)lysine (CML), one of the major advanced glycation end products (AGEs). We studied here how CML modification of elastin is involved in the pathogenesis of actinic elastosis. The CML-modified insoluble elastin became resistant to neutrophil elastase digestion, which was reversed by treatment with aminoguanidine, a potent inhibitor of AGE formation. In a temperature-dependent aggregation assay, CML-modified elastin rapidly formed self-aggregates, the size of which was larger than unmodified elastin. The elastic fiber sheets prepared from CML-modified α-elastin showed 3D wider diameter, tortuous appearance, and decreased elasticity on tensile tests. The CML-modified α-elastin, but not unmodified α-elastin, was found to bind to lysozyme in vitro, supporting the immunohistochemical findings that the antibodies for lysozyme and CML reacted simultaneously with the elastic fibers of actinic elastosis and UV-irradiated skin. The glycated elastin is likely to cause the accumulation of abnormally aggregated elastic fibers and unusual interaction with lysozyme in actinic elastosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.