Abstract

Oligodendrocyte cell migration is required for the development of the nervous system and the repopulation of demyelinated lesions in the adult central nervous system. We have investigated the role of the calcium-dependent adhesion molecules, the cadherins, in oligodendrocyte-astrocyte interaction and oligodendrocyte progenitor migration. Immunostaining demonstrated the expression of N-cadherin on the surfaces of both oligodendrocytes and astrocytes, and oligodendrocyte-like cells adhered to and spread on N-cadherin substrates. The blocking of cadherin function by antisera or specific peptides reduced adhesion of oligodendroglia to astrocyte monolayers, diminished contact time between oligodendrocyte processes and individual astrocytes, and significantly increased the migration of oligodendrocyte-like cells on astrocyte monolayers. Furthermore, a soluble cadherin molecule without adhesive properties increased oligodendroglial proliferation on various extracellular matrix substrates. These data suggest that cadherins are at least partially responsible for the poor migration-promoting properties of astrocytes and that decreasing cell–cell adhesion might effect repopulation of demyelinated multiple sclerosis lesions by oligodendrocyte progenitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.