Abstract

N-cadherin, a member of the Ca(2+)-dependent cell adhesion molecule family plays essential roles in morphogenesis and histogenesis. N-cadherin has been shown in vitro to promote myoblast fusion and neurite outgrowth. We report here the cellular localization of N-cadherin during development and regeneration of the chick neuromuscular system. N-cadherin was uniformly expressed along the surface of myoblasts and myotubes of E6 limb muscles. Later, as synaptogenesis and secondary myogenesis proceeded, N-cadherin expression was down-regulated and restricted to some large-diameter fibres, then to the areas of contact between few myofibres and subsequently disappeared by embryonic day 17, suggesting that this cadherin may be implicated predominantly in fusion of primary myoblasts and, at lower degree, of secondary myoblasts. The presence of N-cadherin in muscle during the period of nerve trunk ingrowth and its down-regulation after synaptogenesis suggests that this molecule might be implicated in both processes. N-cadherin became accumulated at the neuromuscular junction only a few days after the first synaptic contacts were established and remained at the adult neuromuscular junction, suggesting a role of this molecule in the stabilization of the mature neuromuscular junction. In sciatic nerve, the level of N-cadherin expression remained unchanged from hatching to adult life. N-cadherin was widely distributed on the surface of myelinated fibres and on myelinating Schwann cells: in addition, it was concentrated at the node of Ranvier. At the ultrastructural level, the molecule was detected inside, at the surface and in the basal lamina of Schwann cells and also associated with endoneurial collagen. These observations suggest a role of N-cadherin in the structuring and stabilization of the myelin sheaths. After nerve injury, N-cadherin continued to be expressed by proliferating Schwann cells in the distal stump providing a substratum for regenerating axons. N-cadherin reappeared at the surface of denervated muscle fibres without disappearing from the former synaptic sites. It was detected not only in the sarcoplasm and on sarcolemma of denervated muscle fibres, but also in the basal lamina and in the extracellular matrix. The reexpression of N-cadherin at the surface of denervated muscle fibres suggests a role for this molecule in muscle reinnervation. The presence of N-cadherin in basal lamina and its association with collagen fibres raise questions about the release of N-cadherin in the extracellular space and the existence of a putative heterophilic ligand for N-cadherin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call