Abstract

n-Butanol fermentation using Clostridium strains suffers from low titers due to the inability of the strains to tolerate n-butanol. The current study demonstrates a process to get high titer of n-butanol in a single batch mode from the renewable feedstock jatropha seed cake by employing Clostridium acetobutylicum. Chemical mutagenesis was done for improvement of the strain for better n-butanol tolerance and production. Optimization of the parameters resulted in 13.2 g L−1 of n-butanol in 120 h using acid-treated jatropha seed cake hydrolysate (7 % w/v) in anaerobic sugar medium. The process was scaled up to 15 L level, yielding 18.6 g L−1 of n-butanol in 72 h. The strain was found to be tolerant up to 30 g L−1n-butanol under optimized conditions. The n-butanol tolerance was accompanied by over-expression of the stress response protein, GroEL, change in fatty acid profile, and ability to accumulate rhodamine 6G in the strain. The study has a significant impact on economically producing n-butanol from biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.