Abstract
Hepatic microsomal glucose-6-phosphatase is a multicomponent system composed of substrate/product translocases and a catalytic subunit. Previously we (Foster et al. (1996) Biochim. Biophys. Acta 12, 244–254) demonstrated that N-bromoacetylethanolamine phosphate (BAEP) is a time-dependent, irreversible inhibitor of glucose-6-phosphate hydrolysis in intact but not disrupted microsomes. We proposed that BAEP manifests its inhibitory effect by binding with a glucose-6-phosphate translocase protein of the glucose-6-phosphatase system. Here we provide additional evidence that BAEP inhibits glucose-6-phosphate transport in microsomal vesicles and utilize [32P]BAEP as an affinity label in the identification of a glucose-6-phosphate transport protein. In this study, we identify 51-kDa rat and mouse liver microsomal proteins involved in glucose-6-phosphate transport into and out of microsomal vesicles by utilizing (1) an Ehrlich ascites tumor-bearing mouse model, which displays a decreased sensitivity to the time-dependent inhibitory effect of BAEP, and (2) another glucose-6-phosphate translocase inhibitor, tosyl-lysine chloromethyl ketone, in conjunction with [32P]BAEP as an affinity label.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.