Abstract

N/B co-doped porous carbon materials (NBPCs) are regarded as an ideal cathode material for Zn-ion hybrid supercapacitors (ZHSCs). As a capacitive cathode material, the improvement of specific surface area (SSA) and pore structure can efficiently enhance the capacity and rate capability of NBPCs. However, the B atom doping progress will patch up the defect and pore of NBPCs, thereby impeding the further expansion of the SSA area and porous structure. This paper designs a new route for high-efficiency fabrication of NBPCs with high SSA and rich pore structure, employing biomass waste as the carbon source and a novel deep eutectic solvent (DES) as the activation agent. The obtained NBPCs process superior SSA (2270 m2 g–1) and abundant pore structure with rich B, N-doping level. Notably, an interesting occupied effect of doped B atoms on the N-doped carbon network can be identified, which optimizes the proportion of N-contained surface functional groups, leading to the enhancement of conductivity and capacity in NBPCs. Together with the large SSA, high B, N-doping level, an appropriate proportion of N-contained surface groups, and hierarchical porous structure, the NBPC-3 sample exhibits excellent electrochemical performance as cathode materials for ZHSCs, with an energy density of 139.46 W h kg–1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.