Abstract

Quaternary N-aryl-DABCO salts were introduced for the first time as a highly selective sensing platform for thiols and selenols. By employing this platform, a highly sensitive coumarin based "off-on" fluorescent probe was designed and synthesized. The probe possesses a good solubility in water, low background fluorescence, and, most importantly, demonstrates high selectivity to aryl thiols and selenols over their aliphatic counterparts and other common nucleophiles. A dramatic increase in fluorescence intensity is achieved through the selective cleavage of the quaternized DABCO-ring, yielding a piperazine derivatives with a high fluorescence quantum yield (~72 %). Moreover, stability of the probe to the most used reducing agents DTT and TCEP was demonstrated. The limits of detection for p-thiocresol and phenyl selenide were evaluated to be 22 nM and 6 nM, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call