Abstract

Human flavin-containing monooxygenase 3 (FMO3) is a membrane-bound, phase I drug metabolizing enzyme. It is highly polymorphic with some of its variants demonstrating differences in rates of turnover of its substrates: xenobiotics including drugs as well as dietary compounds. In order to measure its in vitro activity and compare any differences between the wild type enzyme and its polymorphic variants, we undertook a systematic study using different engineered proteins, heterologously expressed in bacteria, purified and catalytically characterized with 3 different substrates. These included the full-length as well as the more soluble C-terminal truncated versions of the common polymorphic variants (E158K, V257M and E308G) of FMO3 in addition to the full-length and truncated wild-type proteins. In vitro activity assays were performed with benzydamine, tamoxifen and sulindac sulfide, whose products were measured by HPLC. Differences in catalytic properties between the wild-type FMO3 and its common polymorphic variants were similar to those observed with the truncated, more soluble versions of the enzymes. Interestingly, the truncated enzymes were better catalysts than the full-length proteins. The data obtained point to the feasibility of using the more soluble forms of this enzyme for in vitro drug assays as well as future biotechnological applications possibly in high throughput systems such as bioelectrochemical platforms and biosensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.