Abstract

The recently discovered nitrate ore field in the Turpan-Hami Basin of western China represents an estimated resource of 2.5 billion tons, and is comparable in scale to the Atacama Desert super-scale nitrate deposit in Chile. The research on this area is rarely carried out, and the origin of the deposits remains uncertain. In this study, new methods were used to systematically analyze N and O isotopes in nitrate minerals collected from the Kumutage, Xiaocaohu, Wuzongbulak, Dawadi, Tuyugou, and Shaer ore deposits in the Turpan-Hami Basin. The data showed that the δ 15NAir value ranges from 0.7‰ to 27.6‰, but mostly between 2‰ and 6‰, which was similar to atmospheric NO 3 − . The 18O was highly enriched with δ 18OV-SMOW varying from 30.2‰ to 46.7‰. This differs from levels in deposits derived from microbial nitrogen fixation, but is similar to those in atmospheric nitrates. N and O isotopes data indicated that nitrate deposits in Turpan-Hami Basin must be the result of deposition of atmospheric nitrate particles. Although atmospheric nitrate particles are common, the nitrate deposits could form only under the condition of long-term extreme drought climate and very limited biological activity. This paper summarized the ore-forming mechanism of different types nitrate deposits based on their geological setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.