Abstract
Abstract An ionic liquid, N -allyl- N -methylpiperidinium bis(trifluoromethanesulfonyl)imide PP 13* TFSI has been successfully tested as a solid electrolyte interface (SEI) forming agent for graphite composite anode at elevated temperature of 55 °C in a purely ionic liquid-based electrolyte: 0.5 m LiTFSI in a mixture of PP 13* TFSI–PP 13 TFSI (20–80 wt.%) The reversible discharge capacity was 340–350 mAh g −1 with only a small irreversible capacity loss per cycle. The electrochemical polymerisation of the allylic double bond participates on the SEI formation on the graphite surface. In the absence of unsaturated ionic liquid, the piperidinium cation is co-intercalated into graphite and causes its exfoliation with permanent loss of capacity. The electrolyte is thermally stable up to 320 °C and reasonably conductive (2.4 mS cm −1 at 55 °C).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.