Abstract

The benefit of glucosamine (GlcN) in bone and joint disorders remains controversial. N-acetylation and other N-acylations of GlcN alter its biological properties fundamentally. We have shown previously that N-butyryl glucosamine (GlcNBu) preserved strikingly the subchondral bone structure in a destructive arthritis rat model. Here, we examine whether GlcNBu preserves bone in the ovariectomized (OVX) rat, a model for postmenopausal osteoporosis. Rats were randomized into 4 groups: group 1, sham OVX glucose (Glc) fed; group 2, sham OVX GlcNBu fed; group 3, OVX Glc fed; and group 4, OVX GlcNBu fed. A single, oral, 200-mg/kg dose of GlcNBu or Glc was administered daily for 6 months. Bone mineral content (BMC) and bone mineral density, and biomechanical properties of the femurs and spines were determined by standardized techniques. Two-way analysis of variance with a Bonferroni post hoc test was used for statistical analysis. Ovariectomy in group 3 resulted either in significant or highly significant effects in a number of the tests. For spinal BMCs the interaction between GlcNBu and OVX was significant. For the femurs, this interaction was also seen in energy to failure, and ultimate displacement and ultimate strain tests. In general, ovariectomy was necessary to show significant preventive effects of GlcNBu on mineral content and some biomechanical properties. We conclude that GlcNBu feeding in the OVX rat preserves bone mineral and some biomechanical properties. Translationally, GlcNBu can be positioned between nutriceuticals and pharmaceuticals for the prevention and treatment of osteoporosis. Advantages include low production costs and a favorable safety profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call