Abstract

N-Acyl-glutarimides have emerged as the most reactive precursors for N-C(O) bond cross-coupling reactions to date, wherein the reactivity is driven by ground-state destabilization of the amide bond. Herein, we report a full study on the effect of a glutarimide ring on the structures, electronic properties, and reactivity of fully perpendicular N-acyl-glutarimide amides. Most notably, this report demonstrates the generality of deploying N-acyl-glutarimides to achieve full twist of the acyclic amide bond, and results in the discovery of N-acyl-glutarimide amide with an almost perfect twist value, τ = 89.1°. X-ray structures of five new N-acyl-glutarimides are reported. Reactivity studies in the Suzuki-Miyaura cross-coupling and transamidation reactions provide insight into the reactivity of N-acyl-glutarimides in metal-catalyzed and transition-metal-free reactions. The effect of distortion, structures, and rotational barriers around the N-C(O) axis is discussed. The ability to achieve full distortion of the amide bond significantly expands the range of reagents available for N-C(O) cross-coupling reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call