Abstract

N-Acetylneuraminic acid (Neu5Ac, also referred to as sialic acid) is a nine-carbon sugar found on cell surfaces in higher animals. With key roles in inflammation, brain development, viral adhesion, and production of therapeutic glycoproteins, access to Neu5Ac is essential. We demonstrate that disruption of the N-acetylglucosamine (GlcNAc) degradation pathway by deletion of nagA and bypassing the GlmMU pathway for uridine diphosphate-GlcNAc production by expression of the Saccharomyces cerevisiae genes agm1 and uap1 improves the NeuCB-based direct cell culture approach to Neu5Ac production. The Escherichia coli strain BRL04 (nanT−, nanA−, and nagA−) transformed with a polycistronic inducible expression vector encoding Agm1, Uap1, NeuB, and NeuC, cultivated in a shake-flask and fed with glycerol and GlcNAc produced Neu5Ac at 3.7 g/L (87% conversion from GlcNAc). At the 2 L bioreactor scale, production reached 7.3 g/L at a reduced conversion of 52%. These promising results suggest that this production strain is capable of generating Neu5Ac via high-density cultivation; it remains to be seen if careful control of GlcNAc feeding rate can be optimized to maximize yield.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.