Abstract

We used a comparative genomics approach to reconstruct the N-acetyl-d-galactosamine (GalNAc) and galactosamine (GalN) utilization pathways and transcriptional regulons in Proteobacteria. The reconstructed GalNAc/GalN utilization pathways include multiple novel genes with specific functional roles. Most of the pathway variations were attributed to the amino sugar transport, phosphorylation, and deacetylation steps, whereas the downstream catabolic enzymes in the pathway were largely conserved. The predicted GalNAc kinase AgaK, the novel variant of GalNAc-6-phosphate deacetylase AgaA(II) and the GalN-6-phosphate deaminase AgaS from Shewanella sp. ANA-3 were validated in vitro using individual enzymatic assays and reconstitution of the three-step pathway. By using genetic techniques, we confirmed that AgaS but not AgaI functions as the main GalN-6-P deaminase in the GalNAc/GalN utilization pathway in Escherichia coli. Regulons controlled by AgaR repressors were reconstructed by bioinformatics in most proteobacterial genomes encoding GalNAc pathways. Candidate AgaR-binding motifs share a common sequence with consensus CTTTC that was found in multiple copies and arrangements in regulatory regions of aga genes. This study provides comprehensive insights into the common and distinctive features of the GalNAc/GalN catabolism and its regulation in diverse Proteobacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.