Abstract
Intervertebral disc degeneration (IVDD) is associated with oxidative stress induced reactive oxygen species (ROS) dynamic equilibrium disturbance. Nanozymes, as nanomaterials with enzyme-like activity, can regulate intro-cellular ROS levels. In this study, a new carbon dots nanozyme, N-acetylcysteine-derived carbon dots (NAC-CDs), is developed and proved to be an ideal antioxidant and anti-senescent agent in IVDD management. The results confirmed the NAC-CDs have satisfactory biocompatibility and strong superoxide dismutase (250Umg-1 ), catalase, glutathioneperoxidase-like activity, and total antioxidant capacity. Then, the powerful free radical scavenging and antioxidant ability of NAC-CDs are demonstrated in vitro as observing the reduced ROS in H2 O2 induced senescent nucleus pulposus cells (NPCs), in which the elimination efficiency of toxic ROS is more than 90%. NAC-CDs also maintained mitochondrial homeostasis and suppressed cellular senescence, subsequently inhibited the expression of inflammatory factors in NPCs. In vivo, evaluations of imaging and tissue morphology assessments suggested that disc height index, magnetic resonance imaging grade and histological score are significantly improved from the degenerative models when NAC-CDs is applied. In conclusion, the study developed a novel carbon dots nanozyme, which efficiently rescues IVDD from ROS induced NPCs senescence and provides a potential strategy in management of IVDD in clinic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.