Abstract

Fetal growth restriction (FGR) seriously threatens perinatal health. The main cause of FGR is placental malperfusion, but the specific mechanism is still unclear, and there is no effective treatment for FGR. We constructed a FGR mouse model by adding exogenous asymmetric dimethylarginine (ADMA) through in vivo experiments and found that ADMA could cause placental dysplasia and induce the occurrence of FGR. Compared with the control group, reactive oxygen species (ROS) production in the placenta was increased in mice with FGR, and the expression of autophagy-related proteins p-AKT/AKT, p-mTOR/mTOR, and P62 was significantly decreased, while the expression of Beclin-1 and LC3-II was significantly increased in the FGR group. Furthermore, ADMA had a favorable effect in promoting the formation of autophagosomes. Hydroxychloroquine (HCQ) and N-acetylcysteine (NAC) improved ADMA-induced disorders of placental development and alleviated ADMA-induced FGR. This study found that ADMA could cause excessive autophagy of trophoblasts by increasing the level of oxidative stress, ultimately leading to the occurrence of FGR, and HCQ and NAC had therapeutic effects on ADMA-induced FGR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call