Abstract
Introduction: Oxidative stress may have detrimental effects on different structures of the cells, such as the DNA. Recently, we have published a study demonstrating that N-Acetylcysteine amide (NACA) displayed anti-inflammatory properties on the brain after exposure to oxidative stress in an established neonatal piglet model, imitating perinatal asphyxia. As different clinical studies have shown an association between the severity of hypoxic-ischemic encephalopathy and damage of the kidneys, we investigated a possible protective effect of NACA against H2O2-induced oxidative stress using a porcine epithelial-like embryonic kidney cell line (EFN-R). Objective: To investigate a potential protective effect of NACA on cells of a porcine embryonic kidney cell line exposed to H2O2. Methods: We subjected the cells to different concentrations of H2O2 for variable time periods, seeking the optimal dose-response for the experiments. Based on the results of these investigations, we exposed the cells to 100 μMol of H2O2 and/or 750 μM of NACA for 24 hours. Some of the cells would receive NACA either one hour before or one hour after exposure to H2O2. Results: The viability of the investigated EFN-R cells revealed that both, the group treated with NACA before exposure to H2O2 and the group treated with NACA after exposure to H2O2, exhibited significantly higher cell viability compared to the H2O2 group (p < 0.001 and p < 0.01, respectively). Discussion: The increased viability of the cells may indicate that NACA could play an important role in reducing oxidative stress. Taking the results from our previous study into consideration, our findings may strengthen the theory that NACA may have organ protective properties for neonates exposed to oxidative stress.
Highlights
Oxidative stress may have detrimental effects on different structures of the cells, such as the DNA
As different clinical studies have shown an association between the severity of hypoxic-ischemic encephalopathy and damage of the kidneys, we investigated a possible protective effect of N-Acetylcysteine amide (NACA) against H2O2-induced oxidative stress using a porcine epithelial-like embryonic kidney cell line (EFN-R)
The viability of the investigated EFN-R cells revealed that both, the group treated with NACA before exposure to H2O2 and the group treated with NACA after exposure to H2O2, exhibited significantly higher cell viability compared to the H2O2 group (p < 0.001 and p < 0.01, respectively)
Summary
Oxidative stress may have detrimental effects on different structures of the cells, such as the DNA. As different clinical studies have shown an association between the severity of hypoxic-ischemic encephalopathy and damage of the kidneys, we investigated a possible protective effect of NACA against H2O2-induced oxidative stress using a porcine epithelial-like embryonic kidney cell line (EFN-R). We have published a study demonstrating that NACA displayed antiinflammatory properties after exposure to oxidative stress in an established neonatal piglet model, imitating perinatal asphyxia [2]. As different clinical studies have shown an association between the severity of hypoxic-ischemic encephalopathy and damage of the kidneys [4] [5], we decided to investigate possible protective effects of NACA using the porcine epithelial-like embryonic kidney cell line EFN-R exposed to H2O2. Prior to the experiments with NACA, dose-response investigations of H2O2 were conducted to estimate the appropriate dose for the treatment of cells of a cell line
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.