Abstract

When N-[14C] acetylbenzotriazole, presented here as a new agent for the acetylation of proteins, reacted at pH 8 and 25 degrees C with delta-chymotrypsin, 15 amino groups (the epsilon-amino groups of lysing residues and the alpha-amino terminus of half-cystine-1) and two phenolic groups (those of the two exposed tyrosine residues) were acetylated with respective pseudo first-order constants of 0.056 +/- 0.003 and 0.15 +/- 0.03 min(-1). Surprisingly, in contrast with the acetic anhydride reaction, the alpha-amino group of Ile-16 was found to be not acetylated as shown by N-terminus determination and activity measurements: the modified delta-chymotrypsin (or acetylated delta-chymotrypsin) was fully active after neutral dialysis. Only a transient inactivation due to the incorporation of one [14C] acetyl group per mole of catalytic site was observed. The kinetic constant found for reactivation at pH 8.5 was 0.315 +/- 0.005 min(-1) at 25 degrees C. The enzyme-catalyzed hydrolysis of N-acetylbenzotriazole was described by a k(cat) value of 0.093 +/- 0.005 min(-1) at pH 7 and 25 degrees C. Circular dichroism changes observed at 230 nm during the reaction at pH 8.5, of acetylated delta-chymotrypsin with N-acetylbenzotriazole indicated a total conversion of the amount of enzyme molecules which were in the 'inactive' or 'alkaline' conformation at this pH, into the 'active' or 'neutral' one. Benzotriazole alone was unable to induce such a conformational change. The rate constant of the reverse structural process from the 'neutral' to the 'alkaline' conformation was 0.32 +/- 0.02 min(-1): identical to that of the deacetylation of the catalytic site. Thus, the unusual lack of acetylation of Ile-16 alpha-amino group during delta-chymotrypsin treatment with N-acetylbenzotriazole is interpreted as a stabilization of the enzyme 'neutral' conformation where the Ile-16 alpha-amino group is buried, thus inaccessible to the reagent. The properties of the delta-chymotrypsin modification using N-acetylbenzotriazole led to practical uses: direct spectrophotometric titration of chymotrypsin operational normality at pH 7 and rapid preparation of acetylated delta-chymotrypsin. As a protein reagent, N-acetylbenzotriazole is particularly interesting because of its reactivity towards amino and phenolic groups of amino acid residues, its stability at acid pH, i.e., k(hydrolysis=7.38 X 10(-3) min(-1) at 25 degrees C [Ravaux et al. (1971) Tetrahedron Letters, 4013-4015] and its aromaticity, responsible for optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call