Abstract

Sodium octanoate and N-acetyl-L-tryptophan (N-AcTrp) are widely used as stabilizers during pasteurization and storage of albumin products. However, as compared with N-AcTrp, N-acetyl-L-methionine (N-AcMet) is superior in protecting albumin exposed to light during storage. Here, we examine, whether N-AcMet also is better than N-AcTrp to protect albumin against oxidation. Recombinant human serum albumin (rHSA) without and with N-AcMet or N-AcTrp was oxidized by using chloramine-T (CT) as a model compound for mimicking oxidative stress. Oxidation of rHSA was examined by determining carbonyl groups and advanced oxidation protein products. Structural changes were studied by native-PAGE, circular dichroism, intrinsic fluorescence and differential scanning calorimetry. The anti-oxidant capacity of CT-treated rHSA was quantified by its ability to scavenge peroxynitrite and the hydroxyl radical. The pharmacokinetics of indocyanine green-labeled albumin preparations was studied in male mice. We found that the number of chemical modifications and the structural changes of rHSA were significantly smaller in the presence of N-AcMet than in the presence of N-AcTrp. The anti-oxidant properties of CT-exposed rHSA were best protected by adding N-AcMet. Finally, N-AcMet is superior in preserving the normal pharmacokinetics of rHSA. Thus, N-AcMet is superior to N-AcTrp in protecting albumin preparations against oxidation. In addition, N-AcMet is probable also useful for protecting other proteins. Therefore, N-AcMet should be useful as a new and effective stabilizer and antioxidant for albumin isolated from blood, rHSA, albumin-fusion proteins and for preparations of rHSA-therapeutic complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call