Abstract

Silver-based antimicrobials are widely used topically to treat infections associated with multi-drug resistant (MDR) pathogens. Expanding this topical use to aerosols to treat lung infections requires understanding and preventing silver toxicity in the respiratory tract. A key mechanism resulting in silver-induced toxicity is the production of reactive oxygen species (ROS). In this study, we have verified ROS generation in silver-treated bronchial epithelial cells prompting evaluation of three antioxidants, N-acetyl cysteine (NAC), ascorbic acid, and melatonin, to identify potential prophylactic agents. Among them, NAC was the only candidate that abrogated the ROS generation in response to silver acetate exposure resulting in the rescue of these cells from silver-associated toxicity. Further, this protective effect directly translated to preservation of metabolic activity, as demonstrated by the normal levels of citric acid cycle metabolites in NAC-pretreated silver acetate-exposed cells. Because the citric acid cycle remained functional, silver-exposed cells pre-incubated with NAC demonstrated significantly higher levels of adenosine triphosphate levels compared with NAC-free controls. Moreover, we found that this prodigious capacity of NAC to rescue silver acetate-exposed cells was due not only to its antioxidant activity, but also to its ability to directly bind silver. Despite binding to silver, NAC did not alter the antimicrobial activity of silver acetate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call