Abstract

为了减小磁盘高速旋转所承受的气体阻力、降低硬盘内部结构所承受的气流冲击和振动、以及提高硬盘存储密度和工作稳定性,人们正考虑向硬盘内部填充低密度气体。充气硬盘还具有存储容量大、节能、散热性能好等优点。硬盘工作过程中,磁头滑块飞行特性(承载力W、压力中心Xc和Yc)对硬盘工作稳定性有着重要影响。本文研究了充气气体物理特性、表面粗糙度、磁盘转速、飞行高度和俯仰角对硬盘磁头滑块飞行特性的影响,研究结果发现:磁盘转速的增加、飞行高度的降低、俯仰角的减小和氦气在氦气–空气混合气体中的比重(不同气体物理特性)下降,都会导致磁头滑块承载力的增加;磁盘转速的增加、飞行高度的增加、俯仰角的减小,都会导致压力中心Xc的减小;对于不同的磁盘转速、飞行高度、俯仰角、氦气在氦气–空气混合气体中的比重,压力中心Yc都几乎保持不变;粗糙度高度(σ)对承载力、压力中心Xc和Yc的影响,在不同粗糙度方向(γ)时,呈现出不同的影响规律。 In order to reduce the gas resistance of the high speed rotating disk and the impact and vibration of internal structure in a hard disk drive (HDD), and improve the storage density and working stability of a HDD, some kinds of gases with a low density are considered to fill inside a sealed HDD. The filled-gas HDD has some advantages of a large capacity, energy saving and heat dissipation performance. In an operating HDD, the flying characteristics of the slider, including the bearing capacity W, the pressure center Xc and Yc, have an important effect on the working stability of the HDD. In present paper, the effects of the gas physical properties filled inside the HDD, surface roughness, disk rotational speed, flying height and pitch angle, on flying characteristics of the slider, are studied. The results show that the W of the slider increases with the increase of the disk rotational speed, the decrease of the flying height, the decrease of the pitch angle and the decrease of proportion of helium gas in a mixed gas. The Xc decreases with the increase of the disk rotational speed, the increase of flying height, the decrease of the pitch angle. For different disk rotational speed, flying height, pitch angle, and proportion of helium gas in a mixed gas, the Yc keeps almost unchanged. For different direction of roughness (γ), the roughness height (σ) has different effect on W, Xc and Yc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call