Abstract

Nonlinear optimal feedback law subject to a terminal cost is approximated using quantum mechanical eigenvalue analysis. The optimal feedback law is governed by nonstationary Hamilton-Jacobi equation with a final condition. Numerical time integration in the backward direction must be done along a characteristic curve of the system. Compatibility under such constraints has restricted practical calculations to the system with dimensionality of only 1 or 2. For approximating optimal feedback with a terminal cost, we propose a quantum mechanical algorithm applicable to systems of arbitrary dimensions. The nonlinear optimal control system is represented by a complex-valued linear wave equation, where a time derivative of the system is connected with linear Hamiltonian operator H. We then apply eigenvalue analysis to this operator H. The value function applied to calculation of optimal feedback is approximated using terms, each of which are a product of eigenfunction φK (x) and time exponential function characterized by corresponding eigenvalue EK. The proposed method thus needs no time integration in the backward time direction. Simulation studies are performed for systems with a state variable of either 1 or 2 dimensions. The new algorithm has an advantage over conventional calculations in that we can fully make use of storage and development of eigenvalue analysis tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.