Abstract

This paper considers vibration suppression of a two-mass transfer system, where the work is connected with the hand flexibly. We adopt the idea of jerk reduction of the hand. For this purpose, we derive a state equation including the jerk and acceleration of the hand. Since it contains the differential of input, it is not possible to apply standard control theory. For this reason, we modify the state equation to exclude the differential of input by introducing a new state variable. Then, we design optimal state feedback for a suitable cost function, and show that jerk reduction of the hand is effective for vibration suppression of the work. Since the state feedback containing the jerk and acceleration is not practical, we propose a computation method for an optimal feedback control law using only displacements and velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.