Abstract

The purpose of this study is to present the applicability of homogenization methods based on heterogeneous microstructure in multi-constituent steels. At first, basic equations of a standard elastoplastic constitutive model and the homogenization methods have been discussed to describe nonlinear stress-strain curves of metallic materials. Here the homogenization methods have been classified into three types with the theoretical differences in concept. Numerical demonstrations for Dual-Phase steel have been performed to express the potential of these homogenization methods. The results of numerical demonstrations have indicated that a class of the numerical homogenization approaches is especially useful in both a quantitative evaluation of macroscopic material response and an investigation of microscopic mechanism in consideration of morphology of microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.