Abstract

The water vapor diffusion can be enhanced by the heating from municipal solid waste, and significantly impact the evaporation process in the earthen final cover. The parameters associated with the water vapor diffusion are usually measured by using the instantaneous profile method. This method is very time-consuming because the drying process lasts a long time. In this study, a bottom heating method is proposed to accelerate the drying process in a loess soil column. A constant temperature of 70 °C is applied at the bottom of the soil column. The thermo-hydraulic response of the loess is monitored along the soil column. A numerical model is developed to simulate the coupled thermo-hydraulic process. The numerical model is used to back analyze the tortuosity τ of the loess for vapor diffusion and the parameter a of an empirical evaporation function. We found that the bottom heating accelerated the drying process of the soil column by almost 22 d compared with the conditions without heating under the same evaporation boundary. Before Day 15, the proportions of the enhanced vapor flux in the total water loss were higher than 50%, dominating the evaporation process. The experimental and numerical study demonstrated that the proposed heating method is able to obtain the parameters of vapor diffusion more efficiently than the conventional method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.