Abstract

The purpose of this study was to examine the correlation between the basic imaging properties of two digital radiographic X-ray systems with a direct conversion flat-panel detector and their image qualities, which were evaluated by the observer in hard copy and soft copy studies. The subjective image quality was evaluated and compared in terms of the low-contrast detectability and image sharpness in the two digital radiographic X-ray systems. We applied the radiographs of a contrast detail phantom to the evaluation of low-contrast detectability and analyzed the contrast detail diagrams. Finally, low-contrast detectability was evaluated by the image quality figure (IQF) calculated from the contrast detail diagrams. Also, the subjective image sharpness of human dry bones of two systems was examined and evaluated by the normalized-rank method. The results indicated that System A tended to provide superior subjective image quality compared to System B in both observer studies. We also found high correlations between IQFs and basic imaging properties, such as the noise power spectrum (NPS) and the noise equivalent quantum (NEQ). In conclusion, the low-contrast detectability of the two digital radiographic X-ray systems with a direct conversion flat-panel detector corresponded to the NPS and the NEQ in both outputs (soft copy and hard copy). On the other hand, the subjective image sharpness of human dry bones was affected by their noise properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call