Abstract

Effects of nozzle geometry, and total temperature on supersonic jet noise radiated from rectangular and axi-symmetric plug nozzles are investigated, experimentally. In JAXA (Japan Aerospace Exploration Agency), a pre-cooled turbojet engine for an HST (Hypersonic transport) is under development. In the present study, three kinds of subscale nozzle models are employed, namely two kinds of rectangular plug nozzles (RPN1 and RPN2) and an axi-symmetric plug nozzle (APN), and the jet noise data are acquired at aft angles of the jets by use of 1/4 inch high frequency microphones. The total pressure is set at 0.3MPa(a), which corresponds to the take-off condition of the vehicle, and the total temperature is varied from 290K to 860K. The jet noise spectra obtained are reduced to normalized spectra by use of a scaling law of heated jets (AU n law). It is shown that the normalized spectra collapse onto two lines according to each nozzle geometry, regardless of the total temperature. For APN, the peak SPL is smaller by about 8 to 14 dB when compared with that for RPN1 and RPN2, which implies that the axi-symmetric plug nozzle could be much quieter than rectangular plug nozzle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call