Abstract

Fatigue crack growth test under constant amplitude loading was carried out on α-brass. Successive observation of transgranular small fatigue crack growth behavior was performed by means of an atomic force microscope (AFM) equipped with small in-plane bending fatigue testing machine. In the low growth rate region after crack initiation, the inclined fatigue crack grew along one slip plane in contrast with the alternating slip-off crack growth process in a long crack. Twin boundaries of α-brass worked as a constraint against slip deformation, resulted in frequent crack deflection and crack branching. A large number of dislocations were piled up along the activated slip planes due to cyclic strain hardening, which changed the stress state around crack tip, resulted in the activation of slip deformation on the other slip plane. The fatigue crack deflection behavior was investigated by the crystallographic orientation analysis based on the Electron Backscatter Diffraction (EBSD). It was found that the direction of crack deflection did not decided only by Schmid factor. The slip factor considering the slip system and singular stress field at the crack tip was introduced in order to evaluate the easiness of slip deformation instead of Schmid factor. The direction of crack deflection was found to be explained well by the slip factor and the relative location between the preferential slip plane and crack front.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.