Abstract

We have developed a numerical method for design of minimum-drag supersonic wing thickness with constraints on total volume and wing maximum thickness position. The method is based on the linearized supersonic theory and is an extension of Kawasaki's method which deals only with total volume constraint. The maximum thickness position of the wing, a new constraint condition, is an important information from both aerodynamic and structural point of view. The addition of the constraint has considerably extended the design possibility and has actually produced many interesting optimum thickness families. Numerical examples are given for delta, gothic and arrow wings which confirm the usefulness of present design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call