Abstract

PDF HTML阅读 XML下载 导出引用 引用提醒 北京市白河和潮河流域生态健康评价 DOI: 10.5846/stxb201508181720 作者: 作者单位: 北京市环境保护科学研究院,北京市环境保护科学研究院,北京市环境保护科学研究院,北京市环境保护科学研究院,北京市环境保护科学研究院,北京市环境保护科学研究院 作者简介: 通讯作者: 中图分类号: 基金项目: 国家水体污染控制与治理科技重大专项(2012ZX07203-001-01);北京市典型流域生态健康调查与评估项目;北京环境总体规划前期河流生境完整性研究项目;丰台区重点河段水环境改善技术研究项目 Health assessment of watershed ecosystems: the Chao River and Bai River Basins as a case study Author: Affiliation: Beijing Municipal Research Academy of Environmental Protection; National Engineering Research Center for Urban Environmental Pollution Control,Beijing Municipal Research Academy of Environmental Protection; National Engineering Research Center for Urban Environmental Pollution Control,Beijing Municipal Research Academy of Environmental Protection; National Engineering Research Center for Urban Environmental Pollution Control,Beijing Municipal Research Academy of Environmental Protection; National Engineering Research Center for Urban Environmental Pollution Control,Beijing Municipal Research Academy of Environmental Protection; National Engineering Research Center for Urban Environmental Pollution Control,Beijing Municipal Research Academy of Environmental Protection; National Engineering Research Center for Urban Environmental Pollution Control Fund Project: 摘要 | 图/表 | 访问统计 | 参考文献 | 相似文献 | 引证文献 | 资源附件 | 文章评论 摘要:选取北京市重要的饮用水源密云水库上游白河和潮河流域,结合北京山区流域生态现状,构建了涵盖水域生境结构、水生生物、生态压力和陆域生态格局与功能、生态压力5大类13项指标的评价指标体系,开展了流域生态健康评价。结果表明白河和潮河流域的健康状态整体处于良好等级,但水生生物和陆域生态格局状况相对较差。14个子流域的健康状况差异并不显著,琉璃河、白河下段、汤河上游的健康状况相对较好,潮河中下段和小汤河的健康状况相对较差。流域内不合理的畜禽养殖、岸边带种植及民俗旅游是导致流域生态健康退化的主要原因,建议加强污染负荷排放的控制和监管涉水活动对水生生境的干扰以改善流域健康状况,并重点关注可指示水生态系统早期退化的生物指数,以实现可持续性和适应性的流域管理,保障密云水库的水生态安全。 Abstract:From the perspective of adaptive river basin management, health assessment based on an eco-environmental investigation was used to determine the health state, analyze the pressure influence and diagnose the main problems of watershed ecosystems. The Chao River and Bai River basins, located upstream of the important drinking water source of Beijing (the Miyun Reservoir), were selected as an example for such an assessment. The established index system for the assessment includes 13 indicators, which cover aspects of habitat structure, aquatic organisms, ecological patterns, ecological functioning, and ecological pressure. The health states of water and land areas of the studied basins were evaluated by comparing their state indicator scores, to consequently determine the weakness of the basins' ecosystems. In addition, the major cause for ecosystem health degradation was analyzed by contrasting the ecological pressure indicator scores. The results show that the health states of water land areas of the Chao River and Bai River basins were good. However, the aquatic organisms and ecological patterns were in a poor state. Furthermore, the indices of organism diversity and landscape fragmentation in the Bai River basin acquired a relatively low score, whereas organism diversity, landscape fragmentation, and forest cover score were comparatively low in the Chao River basin. The health pressure assessment showed that indices of aquatic habitat disturbance and pollution load discharge scored low. This observation indicates that in the Chao River and Bai River basins, river habitat damage resulting from anthropogenic disturbances and pollutants are the dominant pressures on ecosystem health. The comprehensive indices of watershed health for the Chao River and Bai River basins have been 78 and 71, respectively, indicating the health levels of both are in relatively good condition. There were a few differences among the health states of 14 sub-basins. Sub-basins of the Liuli River, downstream of the Bai River, and upstream of the Tang River, displayed a relatively better health state. In contrast, the health state of sub-basins of the Chao River (middle-downstream), and Xiaotang River were relatively worse. According to field investigation, excessive livestock breeding, bankside planting, and local tourism in the basin were the main causes of the degradation of watershed health. In order to improve the watershed health state, control on the pollution load and supervision of wading activities that disturb the aquatic habitat should be enhanced. Furthermore, for the Chao River and Bai River basins, the biological index is a more effective indicator than physical and chemical indices. The diversity of benthic animals is very closely related to the condition of river habitat, because some benthic species are sensitive to river habitat destruction caused by excessive wading activities. Therefore, to realize sustainable and adaptive watershed management, and to guarantee the water ecological security of the Miyun Reservoir, more attention should be paid to biotic indices that can effectively indicate the early stages of ecosystem degradation. 参考文献 相似文献 引证文献

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.