Abstract

In the tropics, the El Nino-Southern Oscillation (ENSO) occupies a major part of the interannual air-sea interactive system. The ENSO plays a vital role in triggering the occurrence of extraordinary anomalous climates and weather not only in the tropics but also in the extratropical regions. In the South Asian monsoon region, the ENSO can influence the interannual variability of the monsoon system through at least two different impacts. During the decay phase of ENSO (from winter to summer) its delayed impact operates through large-scale air-sea interaction in the tropical Indian Ocean and land-surface hydrological processes over the Asian Continent, eventually bringing about change in summer monsoon activity in June and July. During the ENSO growth phase (from summer to winter), in contrast, its direct impact is considered to account for monsoon interannual variability especially in August and September. East Asian monsoon variability is also significantly affected by ENSO-related tropical forcing. Especially in early winter, ENSO-related anomalous convection can give rise to a change in the East Asian winter monsoon system through stationary Rossby wave propagation along the South Asian waveguide, but the remote response depends on the geographical configuration of the anomalous tropical convection. In summer, the ENSO's delayed impact is associated with excitation of an extratropical teleconnection, which causes anomalous weather in northeastern Asia. Midlatitude air-sea interactions and their potential impact on large-scale atmospheric circulations are also discussed. The coexistence of the East Asian winter monsoon flow and western boundary current makes air-sea heat exchanges in the Kuroshio extension very active. Due to enhanced baroclinicity and surface heat fluxes from the ocean, a number of extratropical cyclones tend to develop explosively in the vicinity of Japan. The activity of these extratropical cyclones contributes to the downstream development of upper-level teleconnections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call