Abstract

For future space transportation system development, efficient liquid propellant acquisition technologies under microgravity could be required to realize long-term missions in orbit. Microgravity environment is generally established through drop tower, parabolic flight by airplane or orbital/suborbital experiment. These methods are large-scale or not flexible so that compact and simple method is needed for the efficient development. To respond to such request, we propose a static experiment on the ground to realize the similar static free surface under microgravity. The ground experimental result was compared with the results of two types of two-phase flow simulation codes for the verification of the methodology and discuss the characteristics of these numerical codes. We also simulated the free surface under the actual flight condition by using the same simulation method and result showed the validity of the experimental method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.