Abstract
Laser probe beam deflection technique is used for the analysis of laser-induced plasma shock waves in air and distilled water. The temporal and spatial variations of the parameters on shock fronts are studied as functions of focal lens position and laser energy. The influences of the characteristics of media are investigated on the well-designed experimental setup. It is found that the shock wave in distilled water attenuates to an acoustic wave faster than in air under the same laser energy. Good agreement is obtained between our experimental results and those attained with other techniques. This technique is versatile, economic, and simple to implement, being a promising diagnostic tool for pulsed laser processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.