Abstract

For attaining high-strain-rate superplasticity (HSRS) in ceramic materials, prerequisites are described on the basis of existing knowledge about high-temperature plastic deformation and intergranular cavitation mechanisms. The knowledge suggests that a combination of grain-size refinement to 100-200 nm or smaller and enhanced diffusion caused by doping may highly enhance stress-relaxation around triple junctions and may lead to HSRS at temperatures lower than 1250-1300°C in structural ceramics. From this point of view, recent studies are reviewed and discussed on ceramic superplasticity at strain rates higher than 1 × 10−2 s−1. Attention is also placed on the fabrication of materials with nanosized grains and the resultant superplastic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call