Abstract

The dispersion of melted ingots in a continuous hot dip plating bath was investigated using a transparent cold model vessel with a reduced scale of one-tenth. The used tracers were CaCO3 particles with a mean diameter of 1.0 μm and 5.0 mass%KCl aqueous solution. The dispersion of the CaCO3 particles in the bath was observed by eye inspection. The mixing time and the local concentration of the two kinds of tracers were measured with an electrical conductivity sensor and a Laser beam sensor. The dispersion of the CaCO3 particles was mainly controlled by the main stream of liquid caused by the motion of the belt in the bath. The mixing time and the local concentration of the tracer were dependent on the measurement position. The mixing time was shortest when the tracer was introduced in the exit region, i.e., the belt out-going region. This fact suggests that the mixing time in the real bath is shortest by introducing ingots into the exit region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call