Abstract

The structural strength evaluation of crash boxes is predicted by machine learning in this study. The training data was obtained from the dynamic elastic plastic analysis of the crash box. The input physical quantities are barrier angle, box thickness, material properties and mass equivalent to vehicle weight. The output physical quantity is the reaction force. Buckling occurs in the analysis and different directions of corruptions are one of the most interesting phenomenon from a point of engineering view. Physically meaningful features that take into account physical laws, physical properties, shape, and so on were added. As a result, we showed that learning by CNN is possible with higher accuracy. In addition, data design and data augmentation that takes physical phenomena into account are necessary to deal with large outlier. We would like to propose an adaptive method for machine learning in structural evaluation that can be used for a wide range of structural evaluations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.