Abstract

This paper proposes an independent component analysis method using state-space models. Firstly, a learning algorithm to estimate the parameters of the output function of the model is derived based on the property that the probability density function of the output of the model only depends on that of the input and the direct feedthrough term of the model. Secondly, the parameters of the dynamic equation are estimated by the information backpropagation method. Thirdly, since many systems such as mechanical systems do not have any direct feedthrough term, we extend the proposed algorithm to systems without direct feedthrough terms. Furthermore, a numerical simulation demonstrates the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.