Abstract

A turbulence closure model for atmospheric boundary layers is examined, under the assumption that the turbulent flow is steady in its ensemble average and the advection and diffusion terms in the turbulent Reynolds stress and heat flux equations are neglected. The constants which are introduced in order to obtain a closure system are determined referring the experimental results obtained in the wind tunnel. The validity of the closure model thus obtained is checked referring the observational results obtained in the constant-flux layer. In order to apply our model to the planetary boundary layer, simple forms for the eddy transport coefficients of momentum and heat are formulated. In this case the parametarization of the scale-length l=l(z) (z: heihgt) which is introduced in estimating the dissipation rate of turbulent kinetic energy with height is discussed in order to satisfy the observational result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.