Abstract

[Ru(terpy)(bpy)(OH2)]2+ and its analogues were found to be highly active as catalysts toward water oxidation in the presence of Ce4+ as an oxidizing reagent in acidic aqueous media. These findings were considered as a significant breakthrough in this field because there had been a long belief that the four-electron process (i.e., 2H2O→O2+4H++4e−) is much more effectively accelerated by dinuclear or tetranuclear metal complexes. The kinetics of O2 evolution is investigated as a function of either the catalyst concentration or the oxidant concentration, revealing that these catalysts can be classified into two groups exhibiting different rate laws for O2 evolution. Moreover, the singlet biradical character of the hydroxocerium(IV) ion is realized, indicating that the radical coupling of the oxygen atoms of a RuV=O species and a hydroxocerium(IV) ion is the key step for the catalysis. Several important insights into the mechanism of oxygen evolution from water catalyzed by the mononuclear aquaruthenium complexes will also be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.