Abstract

We have proposed a swirling oxidizer type hybrid rocket engine. In this paper, liquid oxygen (LOX) was used as oxidizer. Combustion tests of a hybrid rocket engine with a swirling LOX flow were conducted by changing the swirl strength. Ignition was rapid and reliable, and combustion of PMMA with swirling LOX was stable. Fuel regression rates, C* efficiency and specific impulse of the hybrid rocket engine with swirling LOX flow were smaller than those with swirling gaseous oxygen (GOX). This low performance may be restraint of atomization and vaporization of LOX by formation of a liquid layer on the PMMA fuel and a decline of angular momentum of the swirling LOX during vaporization. Combustion oscillation occurred when the ratios of differential pressure between injector pressure and chamber pressure to chamber pressure were small. This combustion oscillation was confirmed to be a “Chugging” mode due to combustion time lag of LOX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.