Abstract
In this paper, we propose a robust online action recognition method based on boosted sequential classification. Our method utilizes boosting algorithm that is one of ensemble learning algorithms. This algorithm is also known as a feautre selector and has been utilized in the fields of image processing and natural language processing in recent years. Based on the boosting scheme, our method can automatically and efficiently select significant features for action recognition. Additionally, the method leverages temporal dependency of actions based on Ising model to improve recognition performance. We evaluated our method to action recognition, such as walking and running, using motion capture data only with posture features. In the result, our method can classify the actions more robustly than the method that does not utilize temporal dependency of actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.