Abstract

The 3D numerical analysis on the blade dynamic responses of the vertical-axis tidal turbines was presented based on the discrete vortex method of University of British Columbia (DVM-UBC) and the geometrically exact beam theory (GEBT). For the first time the GEBT was used to perform the dynamic analysis for tidal current turbines. Compared with the traditional 3D finite element method, the proposed method has advantages of saving computing cost, easily building the model, high calculation accuracy and so on. In the modal analysis, the obtained natural frequencies of the single blade and the entire turbine with various height-to-radius (<em>H/R</em>) ratios show that, the arm size has larger influence on the frequency than the blade size. In the transient dynamic analysis, the deflections at blade tips in one rotation cycle with various H/R ratios were calculated. According to the design optimization of the turbine geometry, it is found that when the <em>H/R</em> ratio is greater than 3.0, the maximum blade deflection will go beyond the critical blade deflection, which means strength failure of the turbine blades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.