Abstract

We have conducted large molecular dynamics simulations of the dewetting of ultrathin liquid films on a solid substrate at the nanometer scale. In particular, we observed the visco-inertial regime for the first time; this type of dewetting has never been observed because its specific signal is too small, although it is expected to be observed in a wide range of conditions. Dewetting initially behaves in the inertial regime. After the rim size reaches a crossover length, it transits to visco-inertial dewetting, as predicted by the hydrodynamic theory. The assumption of visco-inertial dewetting with the boundary layer in the liquid film agrees with the simulation results. We evaluated the crossover between the inertial and the visco-inertial regimes at the molecular scale that is larger than the critical time based on the hydrodynamic theory, especially in the range of the appearance of the slip effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call