Abstract

We demonstrate the usefulness of molecular simulations for understanding the physical properties of geofluids in the Earth's crust and mantle. Classical molecular dynamics (MD) methods are powerful tools to investigate the equation of state, electric conductivity, dielectric constant, and interfacial tension of highly-concentrated salt solutions over the wide range of temperature and pressure conditions, which are difficult to be studied by experiments. These properties are necessary to interpret the observations by seismic tomography and MT (Magneto-Telluric) method in terms of the distribution of geofluids, since physical properties of the fluid/mineral interfaces affect the bulk properties of fluid-bearing rocks. The experimental data on the mineral surfaces have been limited almost to those in the ambient conditions; they should be investigated over the wide ranges of temperature and pressure by both experimental and theoretical approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.