Abstract

Reactive oxygen species generated by environmental factors, such as radiation, UV and chemicals can cause sequence-specific DNA damage and play important roles in mutagenesis and carcinogenesis. We have investigated sequence specificity of oxidative stress-mediated DNA damage by using 32P-labeled DNA fragments obtained from the human c-Ha-ras-1, p53 and p16 genes. Free hydroxyl radicals cause DNA damage with no marked site specificity. Copper-hydroperoxo complex caused DNA damage at thymine, cytosine and guanine residues. 1O2 preferentially induces lesions at guanine residues. Benzoyloxyl radical specifically causes damage to the 5’-G in GG sequence; this sequence is easily oxidized because a large part of the highest occupied molecular orbital of this radical is distributed on this site.Recently, we demonstrated that BP-7,8-dione, a metabolite of carcinogenic benzo [a] pyrene (BP) , strongly damaged the G and C of the 5’-ACG-3’ sequence complementary to codon 273 of the p53 gene in the presence of NADH and Cu (II) . BP-7,8-dione also caused preferential double base lesion at 5’-TG-3’ sequences. Since clustered DNA damage is poorly repaired, it is speculated that induction of the double base lesions in DNA might lead to activation of proto-oncogene or inactivation of the tumor suppressor gene. Therefore, oxidative DNA damage induced by BP-7,8-dione, especially double base lesions, may participate in the expression of carcinogenicity of BP in addition to DNA adduct formation. Here, we discuss the mechanisms of sequence-specific DNA damage including clustered DNA damage in relation to mutagenesis and carcinogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.