Abstract

The large-eddy simulation (LES) of a volcanic plume based on a multi-fluid approximation was performed. After the impact of subgrid scale (SGS) turbulence models on the structure of a volcanic plume was assessed, the transport process of volcanic ash inside a plume was investigated. The simulation results showed that the selection of SGS turbulence models could lead to impact on the plume structure such as the plume height and ascending velocity. Concerning the transport process of volcanic ash, the spatial distributions of particles with different sizes was not identical mainly because of the difference in mean vertical velocity. This supports the validity that the sedimentation rate is used as a parameter in existing source term models for long-range transport simulation of volcanic ash. However, this also suggests that existing source term models based on the one-fluid approximation can cause considerable approximation error for large particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.