Abstract

Taking into account the physicochemical properties of soil and the complexity of adhesion interface, how to improve the soil adhesion on the mechanical surface is a crucial technical issue. In order to lower the increasing resistance caused by soil adhesion on the surface of a digging shovel in potato harvesting, a potato digging shovel with a non-smooth surface structure was designed based on bionics theory. Based on testing physical and mechanical properties of soil, a soil groove model corresponding to soil physical properties and particle model physical properties was established through a combination of simulation and physical tests, and a simulation test for evaluating the drag reduction performance was conducted. The simulation comparison test results show that the performance of the bionic digging shovel is better than that of the traditional potato digging shovel, regardless of whether the broken soil rate or the working resistance is reduced, and the soil adhered to the mechanical surface can be effectively reduced by 93.3%. The research results can provide ideas and methods for solving the adhesion problem between machinery and soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.