Abstract

We applied an electric-circuit model for the calculation of AC loss of a high-Tc superconducting power-cable conductor with four layers and interlayer insulation. This model is composed of the impedance of each layer, which has a resistive part and an inductive part. The resistance of each layer was calculated using the approximate value of the resistive voltage as a function of transport current of multifilamentary Bi-2223 wire. The inductance of each layer was considered to be one of two kinds: one depending on the self-field directed along the axis of the conductor, and one depending on the self-field directed along the circumferential direction of the conductor. From the results of the calculation using the electric-circuit model, it was found that both the calculated and experimental values of AC loss, as a function of transport current of the conductor, are nearly equal, and that the model explains the electromagnetic property of the conductor well. In calculating the current distribution of the conductor, it was also found that drift, in which almost all the current passes through the outer layer, occurs when the transport current is lower than the Ic-value of the conductor. The inductance that depends on the self-field directed along the circumferential direction of the conductor is dominant in the impedance of each layer. This value decreases with the increase in layer radius. Therefore, the impedance of the outer layer is decreased, and hence, the transport current passing through the outer layer is increased. The drift increases the AC loss of the conductor. In order to control the lack of balance of impedance amongst the layers, the inductance that depends on the self-field directed along the axial direction of the conductor, which is increased in the outer layer, must be increased. This value of inductance increases as the length of the spiral pitch of the high-Tc superconducting wires which make up the conductor decreases. The results of calculations of conductor AC loss as a function of the length of the spiral pitch of the wire showed that AC loss is markedly decreased when the length of the spiral pitch is less than 0.5m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.